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Very, very fast wetting

By D A V I D J A C Q M I N
NASA Glenn Research Center, Cleveland, OH 44135, USA

(Received 2 September 2001 and in revised form 1 November 2001)

Just after formation, optical fibres are wetted stably with acrylate at capillary numbers
routinely exceeding 1000. It is hypothesized that this is possible because of dissolution
of air into the liquid coating. A lubrication/boundary integral analysis that includes
gas diffusion and solubility is developed. It is applied using conservatively estimated
solubility and diffusivity coefficients and solutions are found that are consistent with
industry practice and with the hypothesis. The results also agree with the claim
of Deneka, Kar & Mensah (1988) that the use of high-solubility gases to bathe
a wetting line allows significantly greater wetting speeds. The solutions indicate a
maximum speed of wetting which increases with gas solubility and with reduction in
wetting-channel diameter.

1. Introduction
Immediately after formation, optical fibres, in order to improve their resilience and

refractive properties, are wetted and then coated by running them through a polymer
bath. This wetting typically takes place at capillary numbers Ca = U0µl/σ of O(1000),
that is, at wetting speeds U0 of about 1000 to 2000 cm s−1, surface tensions σ of about
20 to 30 dyn cm−1, and liquid viscosities µl of about 20 to 40 P (Dimitropoulos et al.
2000; Ravinutala et al. 2000; Jochem & Ligt 1985; Lyytikäinen 1998).

Optical fibre wetting is somewhat like plunge-tank wetting; in both the material
being wetted is drawn through a surrounding free surface. However, with optical
fibres wetting takes place in a very narrow orifice – the entrance channel or die of
the coating apparatus – that is typically only 300 to 600µm in diameter (Jochem
& Ligt 1985; Dimitropoulos et al. 2000; Ravinutala et al. 2000). The fibre itself has
a diameter of about 125 µm. The gap between the fibre and the orifice wall is thus
typically about 100 to 300 µm. The drag of the fibre on the liquid is resisted by the
application of high pressures that force-feed the liquid up into the orifice. Because of
the fibre’s high speed and the relatively high viscosity of the fluid, pressure gradients
in the entrance channel are on the order of atmospheres per mm. It appears that
proper shaping of the inlet directs these pressures to the wetting line so that air
entrainment can be resisted.

These high pressure gradients are undoubtedly helpful in resisting air entrainment.
The small size and axisymmetry of the fibre may also be helpful. Simpkins & Kuck
(2000) reported a critical capillary number (the maximum Ca for successful resistance
of air entrainment) of 2.1 for small-diameter fibres entering unpressurized glycerin.
By comparison, for flat tapes in plunge-tank experiments critical Ca is less than 1.
For pressurized orifices Simpkins & Kuck have been able to observe and photograph
successful wetting at Ca greater than 20 (private communication).

However, the success of high-speed optical fibre wetting cannot be entirely explained
in terms of global quantities. Because of the high wetting speed the liquid dynamic
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contact angle must be at or near 180◦. As will be discussed below, the potential exists
for very high and destabilizing pressures to be built up in the receding gas phase
near the wetting line. Some theory is needed for how these small-scale but very large
stresses are relieved or resolved.

A hint of how this is accomplished is given by the frequent practice in the industry
of bathing the wetting line with high-solubility gases. The efficacy of this was first
claimed in a patent assigned to Corning Glassworks (Deneka, Kar & Mensah 1988).
The gas recommended and claimed in the Corning patent was carbon dioxide,
which is typically 3 to 5 times as soluble in polymers as is air. Jochem & Ligt
(1985) experimented with CCl2F2, which is even more soluble in polymers than CO2,
and showed great improvement in coating speed and quality. With CCl2F2 they
demonstrated bubble-free coating at 1250 cm s−1. With air, using the same wetting
die, bubble entrainment occurred at 300 cm s−1 (Jochem & Ligt 1987).

The hypothesis indicated by these claims and results is that dissolution of gas into
the wetting fluid serves to significantly relieve high gas pressures, thereby facilitating
high-speed wetting. In order to examine this hypothesis, this paper discusses a com-
bination lubrication/boundary integral analysis that quantifies gas solubility effects.
The analysis approximates the dynamic contact angle as 180◦, giving a gas column
shape that forms a half-cusp between the wall and the liquid.

Gas properties that could have important effects on high-speed wetting stability
include (i) viscosity, (ii) compressibility, (iii) solubility in the liquid, (iv) diffusivity in
the liquid, (v) slip along the fibre, (vi) Knudsen diffusion of momentum, significant for
gas column thickness less than about 300 nm, and (vii) increased local gas solubility
when the gas phase is confined to a very small domain (nanoscale). Properties of the
liquid phase include (i) viscosity, (ii) surface tension, (iii) van der Waals attractions
between the liquid and the solid and (iv) decrease in the surface tension as the
liquid aproaches the solid. The main body of this paper considers the first four gas
properties and the first two of the liquid. An Appendix briefly discusses the modelling
and effects of most of the remaining properties. Also, Jacqmin (2001) gives a more
complete description of modelling of the gas phase. All the properties relegated to the
Appendix are stabilizing. Their neglect in the main article thus permits a relatively
streamlined analysis of the ‘worst case’.

In spite of the huge practical and fundamental scientific interest of high-speed
wetting, theoretical attempts aimed at understanding it are largely lacking. An early
significant result is by Benney & Timson (1980), who derived an eigenfunction solution
for 180◦ wetting of a solid. Their solution gives the height H(x) of the liquid–gas
interface (the distance of the interface from the fibre or, equivalently, the gas-column
width) as behaving like |x|m+1, where m, the eigenvalue, equals − arctan(2Ca)/π.† As
Ca goes to ∞, m approaches 1/2 from above. The solution neglects the effect of gas
stresses.

There has been more work on free-surface cusp flows (which can be viewed as
‘roll-on’ liquid–liquid wetting). Joseph et al. (1991), showed that these have the same
eigenfunction solution as the one found by Benney & Timson (1980). Shortly after,
Jeong & Moffatt (1992) derived exact solutions for near-cusp flows using complex-
analysis techniques. These solutions also neglect gas and wetting stresses. At micro-
and mesoscale distances from the cusp these solutions approximately match to the
Benney & Timson eigenfunction. Jeong & Moffatt showed that the coefficient of the
eigenfunction is determined by the outer length scale. In their case this scale was

† This corrects a sign error, introduced at their equation (2.12) and carrying on to (3.9).
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the depth of a vortex dipole that drove their flow. At the nanoscale their solutions
show a slight rounding of the cusp, which eliminates the singularity in surface tension
forcing that would otherwise seem to occur (a delta function with amplitude 2σ).

The difficulty with either cusp or roll-on flow is that the pressure in the displaced
gas phase can become very high, leading to instabilities and gas entrainment. The gas
phase is swept into the cusp region by the movement of the fluid and of the solid
being wetted. Since most of the gas has to return, a Poiseuille-like flow is established
with pressure gradients like 1/H2. If the flow were precisely cusp or roll-on, and if the
gas were completely insoluble in the fluid and obeyed the Navier–Stokes equations,
then the gas pressure would be fiercely singular; for the Benney & Timson solution
it would be like x−(1+2m). This would dwarf the viscous and surface-tension-related
stresses in the liquid. Shikhmurzaev (1998) speculated that this problem might be
relieved by Knudsen diffusion. However, this also leads to a singularity (like x−m,
see Jacqmin 2001). Nor does slip along the wall solve the difficulty, unless slip
is also allowed along the liquid–gas interface. Eggers (2001) recently conducted a
lubrication/boundary integral analysis of insoluble two-phase cusp flow assuming,
following Jeong & Moffatt (1992), that the cusp is actually slightly rounded. He
estimated that failure occurs for λκ3/4 > r, where λ is the viscosity ratio µgas/µliq, κ is
the curvature at the rounded cusp, and r is a to-be-determined O(1) quantity. Since,
from Jeong & Moffatt, κ = c1 exp(2πCa)† where c1 is O(1), the maximum capillary
number for cusp stability would be

Camax ' 2

3π
ln

1

λ
+ O(1). (1.1)

This is much too low to account for the stability of optical fibre wetting.
Other industrial processes besides optical fibre manufacturing are reported to allow

high-Ca coating. For example, curtain coating (where a metered stream of liquid falls
from a height above a moving substrate and then coats the substrate) allows wetting
up to a Ca of about 10 (Kistler 1993, p. 343). It seems certain that the additional force
and pressures associated with the fall of the liquid act to allow the observed higher
wetting speed. Recent experiments by Blake, Bracke & Shikhmurzaev (1999) have
quantified some aspects of these effects. Kistler (1993, pp. 339–346) gives a thorough
review of the various possible macro- and microscale phenomena that may affect air
entrainment and wetting stability.

The following first derives, for given H(x), an integro-differential equation for
the pressure pg in the gas phase. This uses a lubrication approximation for the gas
flow and a Green’s function analysis for the diffusion of the gas into the liquid.
H(x) is then found in terms of an integral of the stresses on the liquid interface.
This part of the analysis is linearized about a flat interface. Since the interfacial
stresses can be expressed in terms of H and pg the system of two equations is
closed. We find that there are both minimum and maximum speeds for which
successful wetting is possible. For high capillary number these cutoff speeds are
expressible in terms of a function of two non-dimensional parameters. The equations
are applied to the regime typical of optical fibre coating. It is shown that, indeed, gas
solubility significantly mitigates gas pressure and that, in agreement with the claim
of Deneka et al., the use of higher-solubility gases makes high wetting speeds easier
to achieve.

† This uses the definition of Ca employed by Joseph et al., which is the same as used in this
paper and 16 times that of Jeong & Moffatt.
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Figure 1. The wetting geometry: x is the horizontal coordinate (increasing toward the right), y the
vertical. The wetting line is at x = 0, y = 0. The gas is thus confined to x > 0. The solid is moving
to the left with velocity −U0.

2. The gas flow
We consider the flow of an isothermal, soluble, ideal gas in a ‘half-cusp’ region

bounded by a solid wall located at y = 0 and a liquid interface at y = H(x). The
half-cusp is in x > 0 and ends at the wetting line at x = 0, see figure 1. The bounding
surfaces are quasi-parallel, allowing a lubrication flow analysis for the gas. The solid
is moving at velocity −U0 and the liquid motion is approximated as also being −U0.
The lubrication equations for the gas flow are

∂upg

∂x
+
∂vpg

∂y
= 0,

∂pg

∂x
= µg

∂2u

∂y2
, pg = pg(x), (2.1)

where u and v are the gas x- and y-direction velocity components, pg is the gas
pressure, and µg is the gas viscosity. The first equation is continuity, the second,
x-momentum.

The convection–diffusion equation for the gas in the liquid can be written as

−U0

∂Cl

∂x
= D

(
∂2Cl

∂x2
+
∂2Cl

∂y2

)
; (2.2)

Cl is the gas concentration in the liquid and D is the diffusivity. Cl is assigned units
of pressure.

The boundary conditions at the liquid–gas interface are (i) no-slip, u = −U0, (ii)
phase equilibrium, Cl(H

+) = Spg(H−), where S is the Henry’s law solubility coefficient
for the gas in the liquid, and (iii) equality of normal fluxes,

−D∂Cl

∂y

∣∣∣∣
H+

= (vgas − vliq)pg|H− .

Boundary conditions at the gas–wall interface are (i) no normal velocity and (ii)
no-slip. The gas is at atmospheric pressure, designated p∞, at x = +∞. For simplicity,
it will be assumed that the fluid is saturated with the gas (Cl equals S times p∞) at
x = +∞ and y = +∞.

Integration of the continuity equation from 0 to H(x) gives

∂UavHpg

∂x
= (vgas − vinterface)pg

∣∣
H− = vdiffusion pg

∣∣
H− = −D∂Cl

∂y

∣∣∣∣
H+

, (2.3)

where Uav = −H−1
∫ H

0
u dy. From the momentum equation,

U0 −Uav = − 1

µg

H2

12

∂pg

∂x
. (2.4)
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Substituting (2.4) into (2.3) yields

∂

∂x

(
H3

12µg

pg

∂pg

∂x

)
+

∂

∂x

(
U0Hpg

)
= −D∂Cl

∂y

∣∣∣∣
H+

. (2.5)

In the convection–diffusion equation x-transport is dominated by convection. The
x-direction diffusion term can be neglected and the equation reduces to

−U0

∂Cl

∂x
= D

∂2Cl

∂y2
; (2.6)

∂Cl/∂y also obeys this equation. A Green’s function solution is available (Carslaw &
Jaeger 1959†) that expresses ∂Cl/∂y in terms of the boundary values of ∂2Cl/∂y

2:

∂Cl

∂y
= −

√
D

πU0

∫ ∞
x

∂2Cl

∂y2

∣∣∣∣∣
y=H+

exp

(
−U0(y −H)2

4D(x′ − x)

)
dx′√
x′ − x. (2.7)

This, from (2.6), can be rewritten as

∂Cl

∂y
=

√
U0

πD

∫ ∞
x

∂Cl

∂x′

∣∣∣∣
y=H+

exp

(
−U0(y −H)2

4D(x′ − x)

)
dx′√
x′ − x. (2.8)

Equation (2.8) can be used to find the flux at the interface in terms of the cusp gas
pressure. Multiplying by D, using

∂Cl

∂x′

∣∣∣∣
y=H+

= S
dpg

dx′

∣∣∣∣
y=H−

and specializing the equation to y = H+ gives

D
∂Cl

∂y

∣∣∣∣∣
H+

= S

√
DU0

π

∫ ∞
x

dpg

dx′

∣∣∣∣∣
H−

dx′√
x′ − x. (2.9)

Applying this to equation (2.5) then gives

d

dx

(
H3

12µg

pg

dpg

dx

)
+

d

dx
(U0Hpg) = −S

√
DU0

π

∫ ∞
x

dpg

dx′
dx′√
x′ − x, (2.10)

a one-dimensional integro-differential equation for the steady-state pressure of the
gas in the half cusp.

3. The liquid flow
The flow in the liquid is taken to be Stokes flow. To leading order its velocity is
−U0. Linearizing about −U0 and a flat interface, the kinematic equation for the free
surface is

−U0

∂H

∂x
= vI , (3.1)

where vI is the normal liquid velocity at the interface. This is related to the interfacial
stresses by the boundary integral

vI = − 1

2πµl

∫ ∞
−∞

ln |x′ − x|fy dx′ (3.2)

† See equation (9) in § 2.9. The t occurring in the argument of the exponential function should
be τ.
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(Pozrikidis 1992) where fy is to first order the interfacial normal stress minus the
atmospheric pressure. To this order shear stress contributions to vI are negligible.
Taking the first derivative of (3.2) gives

∂vI

∂x
= − 1

2πµl

∫ ∞
−∞

fy

x′ − x dx′, (3.3)

a Hilbert transform of fy/2µl. It can be inverted to

fy = −2µl

π

∫ ∞
−∞

∂vI

∂x′
dx′

x′ − x (3.4)

and, since vI in x < 0 is 0, specialized to

fy = −2µl

π

∫ ∞
0

∂vI

∂x′
dx′

x′ − x ; (3.5)

fy = σHxx + pg − p∞ and ∂vI/∂x = −U0Hxx. Equation (3.5) can thus be arranged in
the form of an integral equation for Hxx forced by pg:

σHxx − 2µlU0

π

∫ ∞
0

Hx′x′

x′ − xdx′ = p∞ − pg. (3.6)

The equation is linear with a singular Cauchy kernel. The solution for Hxx, as discussed
by Mikhlin (1957, pp. 126–131), is

d2H

dx2
= − (pg − p∞)/σ

1 + 4Ca2
− 2Ca/πσ

1 + 4Ca2
xm−1

∫ ∞
0

(x′)1−m

x′ − x (pg(x′)− p∞) dx′ + C∞xm−1.

(3.7)

Equation (3.6) corresponds to Mikhlin’s equation (1), p. 127, (3.7) corresponds to his
(23). C∞ is a free parameter. C∞xm−1, where m = − arctan(2Ca)/π, is the homogenous
solution to the unforced problem. It is the eigenfunction first found by Benney &
Timson. The arctan branch is taken such that m varies from 1 (as Ca→ 0) to 1/2 (as
Ca→∞). This is the only branch that, in equation (3.6), gives a finite integral.

The advantage of equation (3.7) is that pg− p∞ is significant only in the microscale
region near the wetting line whereas Hxx in (3.6) decays very slowly. As x → ∞ the
first term on the right-hand side of (3.7) decays like x−(1+2m), the second like xm−2 and
the eigenfunction term like xm−1. Thus the Benney & Timson eigenfunction becomes
dominant and gives the macroscopic shape of the fluid interface. C∞ is therefore the
parameter that allows connection of the macroscale appearance of the flow to its
microscale behaviour. Ultimately, as discussed by Jeong & Moffatt (1992, p. 11, their
variable c̄), its value is related to the outer length scale set by the flow geometry. Since
pg is non-singular, Hxx also behaves like xm−1 as x→ 0. The coefficient of xm−1 there is

C0 = C∞ − 2Ca/πσ

1 + 4Ca2

∫ ∞
0

(x′)−m(pg(x′)− p∞) dx′. (3.8)

4. The dimensional equations; ranges of parameters
The coupled system of integro-differential equations is thus

d

dx

(
H3

12µg

pg

dpg

dx

)
+

d

dx
(U0Hpg) = −S

√
DU0

π

∫ ∞
x

dpg

dx′
dx′√
x′ − x, (4.1)
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d2H

dx2
= − (pg − p∞)/σ

1 + 4Ca2
− 2Ca/πσ

1 + 4Ca2
xm−1

∫ ∞
0

(x′)1−m

x′ − x (pg(x′)− p∞) dx′ + C∞xm−1. (4.2)

The boundary conditions for the equations are that pg is finite and H = Hx = 0 at
x = 0 and that pg equals p∞ at x = ∞. The far-field behaviour of pg is

dpg

dx
' −12µgU0

H2
+

12µg

H3pg

L, (4.3)

where L is the total rate of dissolution of air into the fluid, the integral from 0 to ∞ of
the right-hand-side term in (4.1). It is found as part of the solution. The integral from
0 to ∞ of the first two terms of equation (4.2) is precisely 0. (This result can be shown
by converting the integral in x in the second term to a Mellin transform in x/x′.)
Because of this the leading-order behaviour of H at ∞ is of the form C∞xm+1/m(m+1)
plus a constant times xm.

The equations have seven independent parameters, U0, µg, p∞, S
√
D, σ, µl (in Ca),

and C∞. We are primarily interested in the effects of varying S , C∞, and U0. In optical
fibre coating the other parameters show less significant variation. A single set of
representative values of µg, µl, D, σ, and p∞ has therefore been used for all dimensional
calculations. In c.g.s. units, this set is µg = 0.00019 P, µl = 30 P, D = 0.00003 cm2 s−1,
σ = 30 dyn cm−1, and p∞ = 1.01× 106 dyn cm−2 (one atmosphere). Durrill & Griskey
(1966, 1969) give D for a number of different gases diffusing in various molten
polymers. The value chosen for these calculations is in the middle range of their data.

Durrill & Griskey also give gas solubilities. From them, carbon dioxide is typically
about 4 times as soluble in molten polymers as is air. A typical value of S for air is
about 0.1, for CO2 about 0.4.† Both cases will be considered.

Following the results of Jeong & Moffatt (1992), it will be assumed that C∞
is approximately equal to the inverse square-root of the length scale of the outer
geometry. In their case the outer length scale is vortex dipole depth d and they find
a C∞ of 1.225/

√
d. The relevant outer length scale for optical fibre wetting is the gap

between the optical fibre and the wetting-channel wall. This is typically 100–300 µm,
indicating a range for C∞ of about 5 to 10.

Optical fibre coating speeds mentioned in the patent literature range from about
300 cm s−1 to over 2000. Corresponding capillary numbers range from over 100 to
over 2000. The industry norm is in about the middle of this range. These very high
capillary numbers will allow some useful simplification of the analysis.

5. Existence of solutions
To be physically valid, solutions for H must be positive, but pg, which is also

necessarily positive, tends to make Hxx and thus H negative. At the wetting line,
negative Hxx would immediately cause H to be negative. C0 must therefore be greater
than 0 and so, from (3.8), it must be true that

C∞ >
2Ca/πσ

1 + 4Ca2

∫ ∞
0

(x′)−m(pg(x′)− p∞) dx′. (5.1)

For large Ca, a cutoff value of C∞ exists below which there is no solution. This value
is a function of the seven equation parameters.

† This paper uses a somewhat different definition of the coefficient, gas density in the polymer
divided by the density of the gas, than do Durrill & Griskey. This increases the coefficients given
by Durrill & Griskey by a factor of about 1.6.
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At large Ca, for given µg, p∞, S
√
D, σ, µl, and C∞, there can be either no U0 that

allows solutions or a range of solutions from a minimum U0 (a lower U0 cutoff) to
a maximum (the upper cutoff). Solutions also exist as Ca→ 0 in a small region near
and below Ca = 1.

A simple class of solutions exists for large enough C∞. If H were of the form αxβ

then the shape of pg and its maximum value would be independent of α. This is
because α can then be transformed out of (4.1) by the substitution x → α−1/(2β−1)x.
At large C∞, H approximates this form because the third term on the right-hand side
of (4.2) dominates the first two. As C∞ → ∞ the first two terms on the right-hand
side of (4.2) stay finite and become independent of C∞. Equations (4.1) and (4.2) thus
partially decouple.

The lower U0 cutoff occurs where pg − p∞ is small but at high enough velocity so
that the coefficient of the integral in (4.2) is still O(1/U0). At small pg − p∞ (4.1) can
be simplified to

d

dx

(
H3

12µg

dpg

dx

)
+

d

dx
(U0H) = − S

p∞

√
DU0

π

∫ ∞
x

dpg

dx′
dx′√
x′ − x. (5.2)

Scaling H like C∞Lm+1
s , where Ls is the inner length scale, and finding Ls by balancing

the first and third terms in (5.2), and then the pressure scale ps by balancing the second

and third, one finds that pg− p∞ scales like U
2/3
0 . The integral term in (4.2) scales like

(pg − p∞)/U0 and therefore like U
−1/3
0 , thus indicating the cutoff. The essential point

is that the cutoff occurs in a region where a diminishment in U0 causes a less rapid
diminishment in pressure forcing and so, see (3.6) with the comparatively small σHxx

term neglected, the perturbation to H caused by the pressure forcing increases.

6. Non-dimensionalization; specialization to Ca� 1

The seven parameters can be reduced to three through non-dimensionalization.
Setting

x→ Lsx̂, H → C∞Lm+1
s Ĥ , pg → psp̂g, (6.1)

where

Lm+1/2
s =

S

C∞

√
D

U0

, ps =
µgU

2
0

S2D
, (6.2)

(4.1)–(4.2) become

d

dx̂

(
Ĥ3

12
p̂g

dp̂g

dx̂

)
+

d

dx̂

(
Ĥp̂g

)
= − 1√

π

∫ ∞
x̂

dp̂g

dx̂′
dx̂′√
x̂′ − x̂ , (6.3)

d2Ĥ

dx̂2
= −Γ

(
p̂g − p∞/ps)
1 + 4Ca2

− 2ΓCa/π

1 + 4Ca2
x̂m−1

∫ ∞
0

(x̂′)1−m

x̂′ − x̂
(
p̂g(x̂′)− p∞

ps

)
dx̂′ + x̂m−1.

(6.4)

The resulting non-dimensional parameters are Ca, p∞/ps and Γ = ps/σC∞Lm−1
s . The

boundary condition for p̂g at x̂ = +∞ becomes that p̂g approaches p∞/ps. Since
C∞ has been transformed to 1 the problem of finding its cutoff value has been
changed to finding the boundary of the region in (Ca, p∞/ps, Γ ) for which solutions
exist.

As Ca → ∞, m → 1/2 and the length scale Ls becomes (S/C∞)
√
D/U0. The first
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Figure 2. Cutoff values of U0 as a function of C∞, (a) for air with S = 0.1; (b) for CO2 with S = 0.4.
µg = 0.00019 P, µl = 30 P, D = 0.00003 cm2 s−1, σ = 30 dyn cm−1, and p∞ = 1.01× 106 dyn cm−2.

S2Dp∞/µgU
2
0 10−5 10−4 10−3 10−2 0.1 1.0 10 100

(µg/2πµl)(U0/C
2∞S2D)3/4 4.560 2.531 1.361 0.687 0.314 0.129 0.048 0.016

Table 1. Cutoff values of (µg/2πµl)(U0/C
2∞S2D)3/4 for given S 2Dp∞/µgU

2
0 .

term on the right-hand side of (6.4) is O(1/Ca) compared to the second and can be
neglected. Equation (6.4) reduces to

d2Ĥ

dx̂2
= − 1

2π

µg

µl

(
U0

C2∞S2D

)3/4

x̂−1/2

∫ ∞
0

(x̂′)1/2

x̂′ − x̂
(
p̂g(x′)− p∞

ps

)
dx̂′ + x̂−1/2, (6.5)

while (6.3) remains the same. The number of non-dimensional parameters in the equa-
tions has been reduced to two, (µg/2πµl)(U0/C

2∞S2D)3/4 and p∞/ps = S2Dp∞/µgU
2
0 .

Finding the solution region is now a matter of finding the cutoff value of the first
parameter as a function of the second.

7. Results
The equations have been solved numerically using spatially varying node-point

separations. For dimensional calculations, grid spacing was typically set to nanometer
lengths near the wetting line, up to micron lengths in the outer region. A similar
variation in spacing was used for non-dimensional calculations. The derivatives in (4.1)
were discretized using central differences. Its integral was solved by approximating
dpg/dx

′ as piecewise constant. The result can be integrated analytically. The integral in
(4.2) was approximated by taking (pg(x′)−p∞)(x′)1−m as piecewise linear. The resulting
integrand is then also analytically integrable. Convergence checks were carried out
by varying the number of points, grid-stretching parameters, and the length of the
calculated region. The numerical solution at the outer calculated point was fitted to
the analytic far-field solution. Equation (4.1) can display singular behaviour at x = 0.
This was avoided by solving it iteratively using a time-like approach. A ∂pg/∂t-like
term was placed on the left-hand side. The second derivative then acts like a diffusion
operator and convergence to a finite solution is obtained without much difficulty.

Table 1 gives calculated cutoff values of (µg/2πµl)(U0/C
2∞S2D)3/4 as a function

of S2Dp∞/µgU
2
0 . The relationship between the two is approximated well by s =

−0.89 − 0.41r − 0.023r2, where s and r are logs to the base 10 of the two variables.
Figures 2(a) and 2(b) give some dimensional results drawn from this approximation.
They show cutoff values of U0 as a function of C∞ for air and for CO2. The region
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Figure 3. Gas pressure as a function of x for air with U0 = 1000 cm s−1, C∞ = 5.3.
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Figure 4. Gas solution rate as a function of x for air with U0 = 1000 cm s−1, C∞ = 5.3.
Gas volume as would be measured at standard temperature and pressure.

of existence of solutions is between the upper and lower cutoffs. The values of µg, µl,
D, σ and p∞ that are used are given in § 4. The minimum value of C∞ for CO2 is 2.23,
with U0 equalling 508 cm s−1. The minimum value of C∞ for air is 4.47, with U0 of 116.

Dimensonal calculations were also made. Of prime interest is maximum pressure
developed, to check on the assumptions of gas ideality and Henry’s Law, and amount
of gas absorbed by the liquid, to check on the possibility of later nucleation of
bubbles. Calculations were made for U0 = 1000 cm s−1 for C∞ equal to 6, 8 and 10.
Using air, the maximum gas pressure developed is, respectively, 147, 181 and 196
atmospheres. The region of high pressure is small; for C∞ = 6, for example, pg > 100
atmospheres extends to only 75 nm from the wetting line, pg > 10 extends to about
300 nm, and pg > 2 extends to about 1.2µm. The maximum pressure decreases as
C∞ approaches cutoff, because of elongation of the air half-cusp and the resulting
increase in liquid surface area that the gas can dissolve into. Consistent with this, the
volume flux of air into the coating decreases with increasing C∞; it is 6.8 µl s−1 cm−1

(in the direction perpendicular to x and y) for C∞ = 6, 5.9 for C∞ = 8 and 5.3 for
C∞ = 10 (volumes at atmospheric pressure and 20 ◦C). Since the fibre is moving at
1000 cm s−1 this is equivalent to absorbing a layer of air only 53 to 68 nm thick. If
there is later nucleation of bubbles they would be nanoscopic in scale.

The same calculations for CO2 yield 30.7, 31.8 and 32.3 atmospheres, with CO2

fluxes into the coating of 7.74, 6.67 and 5.95 µl s−1 cm−1. The case C∞ = 4 gives a
maximum pressure of 28.2 and a flux of 9.58. The use of CO2 instead of air greatly
lessens the maximum gas pressure and allows a much smaller C∞.

Figures 3 and 4 show pressure and gas solution rate as functions of x. The
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calculation is for air with U0 = 1000 cm s−1 and C∞ = 5.3. The flow is close to
the cutoff point. Of interest is that the pressure reaches a maximum away from the
wetting line. The rate of dissolution is also a maximum there. Very near the wetting
line the gas flow is determined by a balance between the second term in (4.1) and its
integral. The gas in this region is in nearly plug flow.

8. Conclusions
This paper has attempted to explain the phenomenon of very high capillary number

wetting that is common in the optical fibre coating industry. The usual model of
wetting, in which the two fluid phases are completely insoluble, points inevitably
to wetting failure at an O(1) capillary number (Eggers 2001). However, standard
practice in the optical fibre industry is to wet and coat fibres at Ca = O(1000). It has
been proposed here that stresses in the receding gas phase that would otherwise be
destabilizing are significantly ameliorated by solution of the gas into the wetting liquid.
The resulting model of wetting dynamics yields an adjustable macroscopic parameter
that has a cutoff value below which there can be no solution. The calculated value
of this cutoff is consistent with common practice in the sizing of optical-fibre-coating
entrance dies. Maximum and minimum wetting speeds have been found as a function
of gas and liquid properties and wetting-channel size. Results indicate that reduction
in wetting-channel diameter allows higher wetting speeds. Results also agree with the
claim (Deneka et al. 1988) that it can be very advantageous to bathe a wetting line
with high-solubility gases.

I am very grateful to Dr. Enrique Ramé of the National Center of Microgravity
Research for his help and for many interesting and useful discussions.

Appendix. Slip, Knudsen diffusion, and van der Waals forces
Slip and Knudsen diffusion effects are discussed in Jacqmin (2001). With wall slip,

equation (2.4) becomes

U0 −Uav = − 1

µg

H2

2

(
1

2

H

H + λ
+

λ

H + λ
− 1

3

)
∂pg

∂x
. (A 1)

The wall slip length λ is roughly equal to the mean free path. This is about 70 nm at
standard temperature and pressure and is proportional to 1/pg. There is no slip along
the liquid (the two fluids intermingle) and so U0 −Uav continues to be proportional
to H2 ∂pg/∂x. Flux due to Knudsen diffusion, which becomes important below about
H = 5λ, is proportional to H∂pg/∂x. Both effects produce a significant amelioration
of stresses in the gas. The reduction in maximum pressure is over 50%. This results
in turn in about a 50% reduction in gas absorption by the liquid.

Van der Waals forces are normal to the interface and thus can be included in the
model analysis. From Israelachvili (1991), the van der Waals forces are equal to the
rate of change with H of the sum of the liquid and solid surface tensions (the excess
free energies). They can be expressed in the form

F = − A

6π

H

(H +H0)4
= −

(
dσL

dH
+

dσS

dH

)
. (A 2)

For non-polar liquids H0 should be set to 1.65 Å (Israelachvili 1991). When H is
greater than about 1 nm F can be set to the more common form −A/6πH3. A is
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the Hamaker constant. The actual change in surface tensions (as against the first
derivative of their change) becomes important only very close to the wetting line; for
H equal to 1 nm, σL is still about 97% of its value at ∞.

Calculations have been performed including both van der Waals forces and surface
tension variation. The variation in surface tension turns out to be unimportant. Van
der Waals attractions are stabilizing, partly in the same way as is large C∞, in that
they cause an increase in Hx in the vicinity of the wetting line. They also, of course,
resist the gas pressure. The importance of this is currently under study. Early results
suggest that van der Waals forces may operate at too small a length scale to play a
major role in setting either interface shape or the cutoff value of C∞.
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